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Abstract: This  study focuses  on generating and manipulating squeezed states  with two external  oscillators  coupled by an InP
HEMT operating at  cryogenic  temperatures.  First,  the small-signal  nonlinear  model  of  the transistor  at  high frequency at  5  K is
analyzed using quantum theory, and the related Lagrangian is theoretically derived. Subsequently, the total quantum Hamiltoni-
an of the system is derived using Legendre transformation. The Hamiltonian of the system includes linear and nonlinear terms
by which the effects on the time evolution of the states are studied. The main result shows that the squeezed state can be gen-
erated owing to the transistor’s nonlinearity; more importantly, it can be manipulated by some specific terms introduced in the
nonlinear  Hamiltonian.  In  fact,  the  nonlinearity  of  the  transistors  induces  some  effects,  such  as  capacitance,  inductance,  and
second-order  transconductance,  by  which  the  properties  of  the  external  oscillators  are  changed.  These  changes  may  lead  to
squeezing or manipulating the parameters related to squeezing in the oscillators. In addition, it is theoretically derived that the
circuit  can generate two-mode squeezing.  Finally,  second-order correlation (photon counting statistics)  is  studied,  and the res-
ults demonstrate that the designed circuit exhibits antibunching, where the quadrature operator shows squeezing behavior.
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 1.  Introduction

The  squeezing  state  and  its  applications  have  been  de-
veloped recently[1−3]. It has been shown that squeezing origin-
ates  from nonlinearity  effects  in  any system[1−7].  Different  ap-
proaches  and  systems  have  been  employed  to  generate
squeezed states[3−5]. For instance, phase conjugate mirrors us-
ing  four-wave  mixing  interactions  have  been  applied  to  cre-
ate a squeezed state[1, 8].  Another important option is  using a
parametric  amplifier,  in  which  three-wave  mixing  is  used  to
generate  the  squeezed  state[5, 7].  In  addition,  by  controlling
the  spontaneous  emission,  a  two-photon  laser  is  applied  to
produce  a  squeezed  state[1].  Moreover,  atomic  interaction
with an optical wave can produce a nonlinear medium, creat-
ing a squeezed state. Additionally, other phenomena, such as
third-order nonlinearity of the wave propagation in the optic-
al fiber, can generate a squeezed state[7]. In quantum applica-
tions,  the  squeezed  state  is  very  important  because  it  intro-
duces less fluctuation in one quadrature phase than the coher-
ent  state,  which  is  very  similar  to  the  classical  state[9−13].
Quantum  fluctuation  in  a  coherent  state  is  equal  to  zero-
point fluctuation, in which the standard quantum limits noise
reduction in a signal[1, 14].  Therefore, the noise fluctuation can
be reduced below the standard limit  when the system is  in  a
squeezed  state[14].  There  is  no  classical  analog  for  the
squeezed  state,  and  this  state,  in  contrast  to  the  coherent
state that shows Poisson photon counting (photon bunching)
statistics, may show sub-Poisson photon counting (photon an-
tibunching)[1, 2, 13, 14]. In other words, there is no direct connec-

tion  between  squeezing  and  photon  antibunching,  but  each
is a nonclassical phenomenon[1, 3, 13]. For some quantum applic-
ations,  such  as  quantum  radar  and  quantum  sensors[15−20],
the  noise  effect  is  critical  when  the  system  tries  to  detect
low-level  backscattering  signals.  For  signal  detection,  the  re-
ceived  signals,  which  have  minimal  levels,  can  be  easily  af-
fected by noise.  Therefore,  to control  and limit  the noise,  it  is
necessary  to  prepare  the  key  subsystems,  such  as  the  low-
noise  amplifier  (LNA)  and  detector,  to  operate  in  the
squeezed state by which the noise can be reduced below the
zero-point fluctuation. The LNA is an electronic amplifier gener-
ally  designed  to  amplify  low-level  signals  while  simultan-
eously  keeping  the  noise  at  a  very  low  level[21−24].  Today,  a
cryogenic LNA has been designed to operate at very low tem-
peratures  around  5  K,  to  strongly  limit  noise.  So  due  to  this
fact,  cryogenic  LNAs  are  so  popular  in  quantum
applications[24−29].

With  the  knowledge  of  the  points  mentioned  above,  in
this  work,  we  attempt  to  design  a  circuit  containing  two  ex-
ternal oscillators coupled to an InP high electron mobility tran-
sistor  (HEMT)  operating  at  cryogenic  temperature  to  create
the  squeezed  states.  This  type  of  transistor  was  selected  be-
cause  HEMT  technology  does  not  have  a  strong  effect  from
freeze-out at a cryogenic temperature[24−27]. The designed cir-
cuit can be considered a core circuit for an LNA used in front-
end transceivers to amplify faint signals. In this study, the non-
linear  properties  of  the  cryogenic  InP  HEMT  play  a  key  role,
and  we  discuss  how  emerging  nonlinearity  can  affect  the
state  of  the  coupling  oscillators.  Additionally,  a  critical  point
will  be  addressed,  which  relates  to  the  trade-off  between
squeezing generated by the nonlinear  properties  of  the tran-
sistor  and  the  degradation  of  the  produced  state  because  of
the damping created by the transistor’s internal circuits.
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 2.  Theoretical and backgrounds

 2.1.  System description

The  circuit  is  schematically  shown  in Fig.  1,  which  shows
two LC oscillators (resonators) coupled to each other through
a  nonlinear  device  (depicted  in  the  inset  figure).  As  men-
tioned  in  the  previous  section,  the  main  goal  is  to  create  a
squeezing state in a low-noise amplifier (LNA), which is essen-
tial  in  quantum sensing applications[15, 16, 25].  In  fact,  if  such a
circuit  is  prepared  in  the  squeezing  state,  it  helps  minimize
the noise effect. This implies that the performance of the cryo-
genic LNA, at which the noise strongly limits the operation, is
enhanced.  Therefore,  the  circuit  shown  in Fig.  1 is  designed.
In  this  circuit,  the  transistor  is  used  as  a  nonlinear  element,
and  the  state  of  the  oscillators  may  exhibit  squeezing.  It  has
been theoretically shown that nonlinearity arises because the
transistor  can  be  expressed  as  a  nonlinear  capacitor,  induct-
or  coupling  to  the  second  oscillator,  and  second-order
transconductance  (gm2_N).  These  factors  are  defined  in  detail
in  the next  section and can intensely  manipulate the state of
the oscillators to create squeezing. Additionally, Fig. 1 schemat-
ically  reveals  that  only  the  second  oscillator  can  generate
squeezing in  the state;  this  important  point  will  be discussed

in detail later. Nonetheless, we theoretically demonstrate that
coupling oscillators can generate two-mode squeezing.

The high-frequency model of an InP HEMT transistor[25, 27]

coupled  with  two  oscillators  is  shown  in Fig.  2.  Some  ele-
ments in the nonlinear transistor model are created owing to
the  high-frequency  effect,  such  as  Cgs,  Cgd,  Lg,  and  Ld and
some other components, such as resistors, as shown in Fig. 1,
are created to address the thermal loss in the circuit. These ele-
ments are sources of thermal noise in the transistor, and their
effects  are  shown  as  voltage  and  current  noise  sources  in
Fig.  2.  In  fact, Īg

2, Īj
2, Īd

2,  and Ṽi
2 model  the  thermal  noise  of

Rg, Rgd, Rds,  and Rgs,  respectively.  A  noise  model  is  applied  to
the circuit to demonstrate the effects of the contributed resist-
ors.  Additionally,  we  ignored  the  Ls  effect  and  merged Rs

with Rgs to simplify algebra. In the circuit, ids and Īds
2 are the de-

pendent current sources containing the transistor’s nonlinear-
ity and related thermal noise, which is a critical factor in gener-
ating noise. Finally, Cf, Cin, VRF, φ1, and φ2 are the feedback ca-
pacitor and coupling capacitors used to separate the input sig-
nal from the DC signals, input signal, and node flux for the in-
put and output nodes, respectively.  This circuit is wholly ana-
lyzed  using  quantum  theory,  and  we  will  attempt  to  derive
the contributed Lagrangian initially; then, the total Hamiltoni-

 

Fig.  1.  (Color  online)  Schematic  of  the  system containing two external  oscillators  coupling through a  nonlinear  device,  inset  figure:  nonlinear
device internal circuit.

 

Fig. 2. (Color online) Complete system model; LC1 coupling to LC2 through InP HEMT transistor operating at 5 K.

2 Journal of Semiconductors    doi: 10.1088/1674-4926/44/5/052901

 

 
A Salmanogli: Squeezed state generation using cryogenic InP HEMT nonlinearity

 



an of the system is examined, in which the factors that cause
the squeezing in the state will be addressed.

 2.2.  Designed system Hamiltonian

This section analyzes the circuit shown in Fig. 2 using the
full  quantum  theory.  As  shown  in  the  circuit,  it  includes  all
noises  that  can  affect  the  signals,  such  as  the  thermal  noises
generated  by  the  dependent  current  source  and  resistors  in
the circuit.  The data for the nonlinear model of the InP HEMT
operating  at  cryogenic  temperatures  are  listed  in Table  1.
First,  we  theoretically  derive  the  total  Lagrangian  of  the  sys-
tem  to  obtain  the  quantum  properties  of  the  circuit  illus-
trated  in Fig.  2.  For  the  analysis,  the  coordinate  variables  are
defined  as φ1 and φ2 (node  flux),  as  shown  in Fig.  2,  and  the
momentum  conjugate  variables  are  defined  by Q1 and Q2

(loop  charge).  The  total  Lagrangian  of  the  circuit  is  derived
as[29]: 

Lc =
Cin

(φ̇ − VRF) + C


φ̇

 −

L
φ

 + Igφ

+
Cgs


(φ̇ − V
i ) + Cgd + Cf


(φ̇ − φ̇) + idsφ

+ (Ids + Id)φ +
C


φ̇

 −


L
φ

 + Ij (φ − φ) . (1)

In this equation, the dependent current source is defined
as ids = gmVgs + gm2Vgs

2
 + gm3Vgs

3 [22,30], where gm is the intrins-

Īg = KBT/Rg Īd = KBT/Rd Īj = KBT/Rj Īds = KBTγgm
Īi = KBT/Ri

Qi = ∂Lc/∂(∂φi/∂t)

ic transconductance of the transistor and gm2 and gm3 are the
second-and  third-order  transconductance.  These  terms  (gm2,
gm3) bring nonlinearity to the circuit. Moreover, thermally gen-
erated  noises  by  the  resistors  and  the  current  source  are
defined as , , , ,
and ,  where KB, T,  and γ respectively  are  the
Boltzmann constant and operational temperature, and empiric-
al  constant[29].  The  noise  bandwidth  is  supposed  to  be  very
wide (1 Hz). Using the Legendre transformation[14, 29], one can
theoretically  derive  the  classical  Hamiltonian  of  the  circuit.
For  this,  it  is  necessary  to  calculate  the  momentum  conjug-
ate  variables  using  for i =  1,  2  represented
as: 

Q = (Cin + C + Cgs + Cf + Cgd) φ̇ − (Cf + Cgd) φ̇

− CinVRF + gmφ + gmφφ̇ + gmφφ̇

 − CgsV

i ,

Q = (C + Cf + Cgd) φ̇ − (Cf + Cgd) φ̇. (2)

Applying Legendre transformation, the classical Hamiltoni-
an is expressed as: 

Hc = {CA φ̇
 +


L
φ

 +
CB

φ̇

 +


L
φ

}
+ {−Ccφ̇φ̇ + gmφφ̇


 + gmφφ̇


 }

+ {−φ (Ig − Ij ) − φ (Id + Ij + Ids) − Cgs


V
i } , (3)

(∂φi/∂t)

where CA = Cin + C1 + Cgs + Cf + Cgd, CB = Cgd + Cf + C2,  and
CC = Cf + Cgd.  In Eq.  (3),  the first  term relates to the LC reson-
ance  Hamiltonian  affected  by  the  coupling  elements.  It  is
clearly shown that CA and CB are affected due to the transist-
or’s  internal  circuit.  The  second  term  contributes  to  the  lin-
ear  and  nonlinear  coupling  between  the  LC  resonators  and
the  nonlinear  circuit.  Finally,  the  third  term  defines  the  noise
effect  in  the  system,  which  is  originally  generated  by  the
transistor  nonlinearity  in  the  circuit.  In  the  following,  using
Eq.  (2),  one  can  express  the  first  derivative  of  the  coordinate
variables  in  terms  of  the  momentum  conjugates  (Qi)
represented in the matrix form as:

[ φ̇

φ̇
] = 

CM
{[ CB CC

CC CA + CN
] [ Q

Q
] + [ CB CC

CC CA + CN
] [ Cin 

 
] [ VRF


] − [ CB CC

CC CA + CN
] [  gm

 
] [ φ

φ
]} , (4)

(∂φi/∂t)where CM
2 = CB(CA + CN)  – CC

2 and CN =  2gm2φ2_dc +  6gm3φ2_dc |dc is  the capacitor  generated due to the nonlinearity  ef-
fect.  In  the  following,  we  will  show  that  this  quantity  strongly  affects  the  coupled  LC  resonator’s  frequency  and  impedances,
and consequently, the quantum properties of the LC resonators are severely influenced by CN. By substitution of Eq. (4) into Eq. (3)
one can derive the total Hamiltonian for the system; however, to study the design in detail and get to know about each factor’s
impact on the system, we initially use the linearization technique to linearize the nonlinear terms in the second term of Eq. (3).
Thus, the linear Hamiltonian of the system is defined as:

HL = { 
Cq

Q
 +


L
φ

 +


Cq
Q

 +


L′
φ

} + { 
Cqq

QQ + gQφ + gQφ} + {VqQ + VqQ + Ipφ − Igsφ} , (5)

L′
L′

Īgs
Īgs = Īg − Īj

where Cq1, Cq2, Cq1q2, g12, g22, L2’, Vq1, Vq2, and Ip2 are defined in Appendix A, and the dc terms are ignored for simplicity. In fact,
these coefficients are essentially the function of gm, CN, CC,  and VRF by which the nonlinearity effect of the transistor is emphas-
ized. In other words, the nonlinearity created by the transistor induces some factors by which the properties of the coupling LC
resonators  are  strongly  affected.  For  instance,  the  LC resonator  impedances  are Z1 =  (L1/Cq1)0.5, Z2 =  ( /Cq2)0.5,  and the  associ-
ated frequencies are ω1 = (L1Cq1)−0.5, ω2 = ( /Cq2)−0.5.  The relations show that the coupling oscillator’s impedance and frequen-
cies, especially the second LC become affected. Additionally, some terms in Eq. (2), such as Q1Q2, Q2φ1, and Q1φ2 show the coup-
ling between oscillators in the circuit design. Also, in the third term in Eq. (5),  some terms such as Vq1Q1, φ1, Vg2Q2, and Ip2φ2

in the equation declare the RF source and thermal noise coupling to the contributed oscillators.  In this equation, .  In

Table 1.   Values for the small signal model of the 2 × 50 μm InP HEMT
at 5 K [31-33].

Stands for Value

Rg Gate resistance 0.3 Ω
Lg Gate inductance 75 pH
Ld Drain inductance 70 pH
Cgs Gate–source capacitance 69 fF
Cds Drain–source capacitance 29 fF
Cgd Gate–drain capacitance 19 fF
Rgs Gate-source resistance 4 Ω
Rgd Gate–drain resistance 35 Ω
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the following, one can derive the linear Hamiltonian in terms of annihilation and creation operators using the quantization pro-
cedure  for  the  coordinates  and  the  related  momentum  conjugates.  The  quadrature  operators  defined  as Q1 =  –i(a1 –
a1

+)(ħ/2Z1)0.5, φ1 =  (a1 + a1
+)(ħZ1/2)0.5 and Q2 =  –i(a2 – a2

+)(ħ/2Z2)0.5, φ2 =  (a2 + a2
+)(ħZ2/2)0.5,  where  (ai, ai

+) i =  1,  2  are  the  first
and second oscillator’s annihilation and creation operators. Thus, the linear Hamiltonian in terms of the ladder operators is giv-
en by:

HL = {h̵ω (a+ a +


) + h̵ω (a+ a +



)} + ⎧⎪⎪⎪⎨⎪⎪⎪⎩− h̵




Cqq

√
ZZ

(a − a
+) (a − a+ ) − ih̵


g

√
Z

Z
(a − a+ ) (a + a+ ) − ih̵


g (a − a+ ) (a + a+ )⎫⎪⎪⎪⎬⎪⎪⎪⎭

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩−iVq
√

h̵
Z

(a − a+ ) − iVq

√
h̵
Z

(a − a+ ) + Ip

√
h̵Z


(a + a+ ) − Igs

√
h̵
Z

(a + a+ )⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
(6)

In the following, it is necessary to add the nonlinearity to the Hamiltonian and derive the total Hamiltonian containing the
linear and nonlinear parts. The nonlinear terms in Eq. (3) can be re-written as:

HN = {gm + gmφ̇_dc}φφ̇

 . (7)

Using Eq. (4), the nonlinear Hamiltonian is given by:

HN = gm_N [{ C
B

C
M

φQ

 +

C
C

C
M

φQ

 +

CBCC
C
M

φQQ −
gmC


B

C
M

φ
Q −

gmCBCC
CM φ

Q +
g
mC


B

CM φ

}

NL

× {−gmC
BCinVRF
C
M

φ
 +

C
BCinVRF
C
M

Qφ +
CBCCCinVRF

C
M

Qφ +
C
BV


inV


RF

C
M

φ}
L

] , (8)

(∂φi/∂t)where gm2_N = gm2 + 6gm3 |dc. The linear part of Eq. (8) can directly attach to Eq. (5) to make the modified linear Hamiltoni-
an given by:

HL = { 
Cq

Q
 +


L
φ

 +


Cq
Q

 + ( 
L′

+


LN
)φ

} + { 
Cqq

QQ + (g + gN)Qφ + (g + gN)Qφ}
+ {VqQ + VqQ + (Ip + Ip2N)φ − Igsφ} . (9)

As can be clearly seen in Eq. (9), the nonlinear Hamiltonian can change the coupling between oscillators in the circuit. The mo-
st important factor is gm2_N, which manipulates the coupling between different coordinates and their momentum conjugates. Ad-
ditionally,  the  attachment  from  Eq.  (8)  to  Eq.  (5)  changes  the  second  resonator’s  inductance  by  a  factor  of  L2N.  The  term
brought  from  nonlinearity  (L2N)  manipulates  the  second  resonator’s  impedance  and  frequency.  Finally,  the  nonlinear  terms  of
Eq. (8) are considered, and so, the total Hamiltonian of the system in terms of the ladder operators is given by:

Ht = [{h̵ω (a+ a +


) + h̵ω (a+ a +



)}

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩− h̵




Cq1q2
√
ZZ

(a − a+ ) (a − a+ ) − ih̵

g′

√
Z

Z
(a − a+ ) (a + a+ ) − ih̵


g′ (a − a+ ) (a + a+ )⎫⎪⎪⎪⎬⎪⎪⎪⎭

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩−iVq
√

h̵
Z

(a − a+ ) − iVq

√
h̵
Z

(a − a+ ) + I′p

√
h̵Z


(a + a+ ) − Igs

√
h̵
Z

(a + a+ )⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎥⎥⎦L

+ [−h̵g (a − a+ ) (a + a+ ) + h̵g (a + a+ ) (a − a+ ) − h̵g (a − a+ ) (a − a+ ) (a + a+ )
+ h̵g(a + a+ ) + ih̵g (a − a+ ) (a + a+ ) + ih̵g (a − a+ ) (a + a+ )]NL, (10)

√(h̵/Z) √(h̵/Z)√(ZZ) √(h̵/Z)√(h̵Z/) √(h̵/Z)√(h̵/Z)

where IP2’ = IP2 + IP2N, g12’  = g12 + g12N,  and g22’  = g22 + g22N.
Also, g13 = (1/2Z1)( )gm2_NCB

2/CM
4, g14 = (1/2Z2)( )

gm2_NCC
2/CM

4, g15 =  (1/ )( )gm2_NCBCC/CM
4, g16 =

(Z2/2)( )gm
2gm2_NCB

2/CM
4, g17 = Z2( )gmgm2_NCB

2/
CM

4,  and g18 = Z2( )gmgm2_NCBCC/CM
4.  It  is  clearly

shown  in  coefficients  from g13 to g18 where  the  effect  of
gm2_N is  dominant.  In  other  words,  the  system’s  nonlinearity
in  this  work  is  strongly  changed  and  controlled  by  the
second-order transconductance gm2_N. Now, one can show us-

ing  the  total  Hamiltonian  of  the  system,  which  terms  in  the
presented  Hamiltonian  in  Eq.  (10)  can  generate  the  squeez-
ing state.

 3.  Results and discussions

A  squeezed-coherent  state  is  generally  produced  by  the
act of the squeezing and displacement operators on the vacu-
um  state  defined  mathematically  as  |α,ζ >  = D(α)S(ζ)  |0>,
where  |0>  is  the  vacuum  state[14].  It  is  found  that  the  coher-
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ent state is  generated by the linear terms in the Hamiltonian,
whereas  a  squeezed  state  needs  quadratic  terms  such  as a2

and a+2 in  the  exponent.  The  squeezed-coherent  state S(ζ,α)
can be analyzed as the evolution exp[Ht/jħ] under the Hamilto-
nian defined in Eq. (10). Based on this definition, any quadrat-
ic  terms  such  as a2 and a+2 in  the  Hamiltonian  may  generate
squeezing.  The  Hamiltonian  in  Eq.  (10),  the  squeezed  state,
can be generated by: 

S(ζ) = exp [ζ (a
 − a+ ) + ( ζ∗


a
 −

ζ

a+ )] t. (11)

In this equation the squeezing parameters are defined as
ζ1 =  –0.5g22’  + g18Re{A2}  +  jg14Im{A2}  and ζ2 =2A1

*(–g17–jg15),
where A1 and A2 are  the  strong  fields  (DC  points)  of  LC1 and
LC2.  The  DC  points  can  be  calculated  using  Heisenberg–
Langevin  equations  in  the  steady-state[15, 16].  Also,  Re{}  and
Im{}  indicate  the  real  and  imaginary  parts,  respectively.  Eq.
(11) clearly shows that the squeezing is generated just for LC2

and  does  not  happen  for  LC1.  This  point  contributes  to  the
nonlinearity  terms  in  Hamiltonian  expressed  in  Eq.  (10)  and
also  is  related  to  the  dependent  current  source  containing
gm2 and gm3,  which  is  directly  connected  to  LC2.  The  import-
ant  point  about  the squeezing strength parameters ζ1 and ζ2

is  that  each depends on gm2_N.  In  Eq.  (11), ζ1 and ζ2 are  com-
plex  numbers,  meaning  that  the  squeezing  parameters  con-
tain  the  phase  which  determines  the  angle  of  the  quadrat-
ure  to  be  squeezed.  Additionally,  we  found  that  the  system
can generate two-mode squeezing. That means that the non-
linearity  created  by  the  transistor  couples  two  oscillators  so
that  the  coupled  modes  become  squeezed.  The  expression
generated  due  to  the  Hamiltonian  of  the  system  for  two-
mode squeezing is expressed as: 

S(ζ) = exp [( ζ∗t

aa −

ζt

a+ a

+
 ) + ( ζ∗t


aa −

ζt

a+ a

+
 )] t, (12)

where ζt1 =  jA2g15 and ζt2 =  jA1g13.  In  the  same  way,  the
squeezing  parameters  are  strongly  dependent  on gm2_N.  Fi-
nally, one can easily find that the system can generate the co-
herent  state,  which  means  that  the  state  generated  by  the
Hamiltonian  expressed  in  Eq.  (10)  is  a  squeezed-coherent

state  or  a  two-mode  squeezed-coherent  state.  In  the  follow-
ing,  we  just  focus  on  the  squeezed-coherent  state  and  study
the parameters that can manipulate the squeezing states. For
simulation,  the  limit  for  time  evolution  in  the  exponent
(exp[Ht/jħ])  is  defined as t0 < {1/κ1,  1/κ2},  where κ1 and κ2 are
the  first  and  second  oscillators’  decay  rates.  By  selecting t0,
the system is forced to generate squeezing before the resonat-
or  decaying,  by  which  the  squeezing  is  destroyed[1].  Some
more information is introduced about t0 in Appendix B.

In  this  study,  quadrature  variance  is  used  to  demon-
strate  the  behavior  of  the  state  generated  by  the  oscillators.
In  addition,  we used the bunching and antibunching behavi-
or  of  the  generated  photons.  The  second-order  correlation
function, g2(τ),  must  be  calculated.  For  the  designed  system,
concerning the fact that t0 limits the system, the photon count-
ing  time  is  sufficiently  short.  Thus,  for  such  a  short  counting
time,  the  variance  of  the  photon  number  distribution  is  re-
lated to the second-order correlation function g2(τ = 0)  = 1 +
(V(n)  –  <n>)/<n>,  where V(n)  and  <n>  are  the  photon  num-
ber  variance  and  the  average,  respectively[1, 13].  It  has  been
shown  that  this  phenomenon  is  called  anti-bunching,  a  non-
classical  phenomenon  for  light  with  sub-Poissonian  statistics
g2(τ = 0) < 1. Of course, g2(τ = 0) < 1 is not a necessary condi-
tion  for  squeezing  the  state;  however,  if g2(τ =  0)  >  1,  the
field  is  a  classical  field[1].  In  other  words,  the  squeezing  state
may exhibit bunching and antibunching behaviors. The follow-
ing section discusses the aforementioned points with some re-
lated simulations.

The squeezing of the second oscillator regarding Eq.  (11)
is  simulated,  and  the  results  are  shown  in Fig.  3.  As  seen  in
Fig.  3(a),  which  illustrates  the  quadrature  operator’s  variance
versus gm with  the  nominal  reference  of  0.25,  the  squeezing
appears in the resonator and reaches the maximum value for
gm around 45 mS. However, the amount of the squeezing is de-
creased  when gm exceeds  60  mS.  More  clearly,  the  optimum
amount of squeezing occurs between 38 and 60 mS. It may re-
late to the fact  that gm directly manipulates Īds

2 by which the
noise  exceeds  in  the  system,  and  due  to  that,  the  squeezing
is  strongly  limited  when gm is  increased.  Additionally,  in
Fig.  3(a),  the  dashed  graph  shows  ∆y2 >  0.25,  indicating  that

 

Fig. 3. (Color online) (a) Quadrature variance versus gm. (b) Second-order correlation function versus  gm. Cf = 0.02 pF, gm3 = 1200 mA/V3, gm2 =
200 mA/V2, VRF = 1 μV, κ = κ1 = κ2 = 0.001ω.
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this  operator  for  each  value  of gm shows  bunching;  in  other
words,  the  operator  shows  classical  field  behavior.  We  the-
oretically  show  that  the  important  factors  affecting  LC2 to
generate  a  squeezing  state  include CN, CN

’,  and gm2_N.  To
know  about  the  factor's  effects  and  compare  with  other  ele-
ments,  the  contributed  values  are  calculated  for gm =  45  mS
and  represented  as CN =  3.3  pF, CN

’ =  72  mA/V,  and gm2_N =
677 mA/V2. These values show nonlinear effects in the transist-
or, which changes the electrical properties of the circuit. For in-
stance,  one  can  compare CN with Cgd or Cgs,  which  indicates
that CN is  greater  than  the  internal  capacitances  and gm2_N is
comparable with gm2.

In  addition,  the  second-order  correlation  function g2(τ =
0)  behavior  can  be  considered,  as  illustrated  in Fig.  3(b).  The
figure shows perfect consistency with the quadrature operat-
ors’  variance  around gm =  40  mS.  The  value  of g2(τ =  0)
around 45 mS reaches  its  minimum and is  less  than 1,  which
means that  the second resonator  exhibits  antibunching.  Not-
ably,  the  change  in  the  sign  of g2(τ =  0)  from  bunching  (g2

(τ = 0)  >1)  to antibunching (g2(τ = 0)  <1)  indicates squeezing
in the system. The results shown in Fig. 3(b) reveal that squeez-
ing occurs only for small values of gm. In other words, the tran-
sistor's  current  amplification  factor  (gm)  should  be  main-
tained at a low level to generate squeezing at cryogenic tem-
peratures. Nonetheless, this is clearly shown in Eq. (11) that ζ1

and ζ2 are  strongly  manipulated  by gm2_N,  which  is  a  funda-
mental  function  of gm3,  and  that CN plays  a  key  role  in  chan-
ging  the  coupling  between  resonators.  Additionally,  other
factors  such  as  feedback  capacitance,  LC  resonator  decay
rate,  and  input  RF  source  can  influence  the  squeezing  in  the
system. For instance,  the effect  of gm2, gm3,  and that CN plays
a key role in changing the coupling between resonators. Addi-
tionally, other factors such as feedback capacitance, LC resonat-
or  decay  rate,  and  input  RF  source  can  influence  the  squeez-
ing in the system. For instance, the effect of gm3 as a nonlinear-
ity  factor  on  the  quadrature  operator  variance  and  photon
bunching  and  antibunching  is  illustrated  in Fig.  4. Fig.  4(a)
shows  that  by  increasing gm3, the  quadrature  variance  in-
creases.  This  contributed  to  the  increase  in  the  squeezing
strength parameters. In addition, the figure shows that increas-
ing gm3 leads  to  maintaining  ∆x2 <  0.25  for  larger gm.  In  the

same way, the effect of gm3 increasing on the second-order cor-
relation  function  is  depicted  in Fig.  4(b).  This  reveals  that  in-
creasing gm3,  and  that CN plays  a  key  role  in  changing  the
coupling between resonators. Additionally, other factors such
as  feedback  capacitance,  LC  resonator  decay  rate,  and  input
RF  source  can  influence  the  squeezing  in  the  system.  For  in-
stance,  the  effect  of gm3 causes  an  increase  in gm to  120  mS,
in  which  the  second-order  correlation  shows  antibunching.
This  contributes  to  the  fact  that  increasing gm3 changes CN

and gm2_N, strengthening the squeezing behavior.
Additionally,  the  effects  of  other  parameters  such  as Cf,

VRF, gm2, and oscillator decay rate κ are analyzed in this study.
The  results  of  the  simulations  are  depicted  in Fig.  5.  In  this
graph, the red dashed line is inserted to easily trace the bunch-
ing to the antibunching (and vice versa) entry point as a func-
tion  of gm.  In  this  simulation,  it  is  additionally,  the  effects  of
other  parameters  such  as Cf, VRF, gm2,  and  oscillator  decay
rate κ are  analyzed  in  this  study.  The  results  of  the  simula-
tions are depicted in Fig.  5.  In this graph, the red dashed line
is  inserted  to  easily  trace  the  bunching  to  the  antibunching
(and  vice  versa)  entry  point  as  a  function  of gm3,  and  that CN

plays  a  key  role  in  changing  the  coupling  between  resonat-
ors.  Additionally,  other  factors  such  as  feedback  capacitance,
LC  resonator  decay  rate,  and  input  RF  source  can  influence
the squeezing in the system. For instance, the effect of gm.  In
this  simulation,  it  is  assumed that  the two oscillators  had the
same decay rate κ1 = κ2 = κ. As expected, Fig. 5 shows that in-
creasing Cf, VRF,  and gm2 causes  an  increase  in  antibunching,
whereas an increase in the decay rate leads to a decrease in an-
tibunching. In this figure, the key factor that can be freely ma-
nipulated  is  the  feedback  capacitor,  by  which  circuit  proper-
ties,  such  as  noise,  gain,  and  stability,  can  be  manipulated.
The graph in Fig. 5(b) reveals that increasing the feedback ca-
pacitor  causes  antibunching  for  a  larger gm.  This  may  be  re-
lated to  the  noise  figure  enhancement  using feedback in  the
circuit. In other words, using a feedback capacitor strongly en-
hances the noise figure of the circuit, which means that elimin-
ating  noise  leads  to  enhanced  squeezing.  Assumed  that  the
two oscillators had the same decay rate κ1 = κ2 = κ. As expec-
ted, Fig. 5 shows that increasing Cf, VRF,  and gm2 causes an in-
crease in antibunching, whereas an increase in the decay rate

 

Fig.  4.  (Color online) (a)  Quadrature variance versus gm,  (b) second-order correlation function versus gm for different gm3 (mA/V3); Cf = 0.02 pF,
gm2 = 200 mA/V2, VRF = 1 μV, κ = 0.001ω.
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leads  to  a  decrease  in  antibunching.  In  this  figure,  the  key
factor that can be freely manipulated is the feedback capacit-
or, by which circuit properties, such as noise, gain, and stabil-
ity, can be manipulated. The graph in Fig. 5(b) reveals that in-
creasing the feedback capacitor causes antibunching for a lar-
ger gm.  This  may be related to the noise figure enhancement
using  feedback  in  the  circuit.  In  other  words,  using  a  feed-
back  capacitor  strongly  enhances  the  noise  figure  of  the  cir-
cuit,  which  means  that  eliminating  noise  leads  to  enhanced
squeezing.

The  results  illustrated  in  this  study  show  that  cryogenic
InP  HEMT  transistor  nonlinearity  can  generate  a  squeezed
state.  This  is  a  significant  achievement  because  such  a  sys-
tem  can  be  essential  to  a  cryogenic  detector  used  in
quantum  applications[29].  Thus,  the  operation  of  the  detector
or amplifier in the squeezed state implies that the noise fluctu-
ation is limited below the zero-point changes. This is an inter-
esting  goal  of  this  study;  nonetheless,  we  know  that  this  is
challenging to achieve.

 4.  Conclusions

This  article  mainly  emphasizes  the  generation  of  the
squeezing state using the nonlinearity of the InP HEMT transist-

or. For this purpose, we designed a circuit containing two ex-
ternal  oscillators  coupled with a cryogenic InP HEMT transist-
or  operating  at  5  K.  The  circuit  was  analyzed  using  quantum
theory, and the contributions of the Lagrangian and Hamiltoni-
an  functions  were  theoretically  derived.  Some  key  factors  in
the  Hamiltonian  arise  because  the  transistor’s  nonlinearity
could  generate  the  squeezed  state.  Thus,  we  focused  on
these  parameters  and  their  engineering  to  generate  squeez-
ing.  The  results  show  that  the  squeezed  state  occurred  only
for the second oscillator. This implies that the first oscillator ex-
periences  a  coherent  state.  In  addition,  we  theoretically
demonstrate that two coupled oscillators through a cryogen-
ic transistor can generate two-mode squeezing. Thus, as a gen-
eral  point,  if  such  a  cryogenic  circuit  could  generate  squeez-
ing,  then  the  critical  noise  fluctuations  would  be  minimal  by
which the coherent time of a quantum system is directly ma-
nipulated. Coherent time is the duration in which the entangle-
ment can be created between modes. As a result, by optimiz-
ing this time through minimizing the noise in the system, the
entanglement can be alive for a long time.

 Appendix A

In this appendix, all of the parameters used in the main art-

 

Fig. 5. (Color online) Second-order correlation function versus gm. (a) gm2 effect. (b) Feedback capacitance effect (Cf). (c) LC resonator decay rate ef-
fect (κ). (d) Input RF source amplitude effect (VRF). gm3 = 1200 mA/V3.
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icle  listed as Cq1, Cq2, Cq1q2, g12, g22, Vq1, Vq2 and IP2 are  given
by: 


Cq

=
C

B(CN + .CA)
C
M

−
C
CCB
C
M

,


Cq

=
C

C(CN + .CA)
C
M

+
CA

′CB

C
M

−
CC(CN + CA)CB

C
M

,


Cq1q2

=
CCCB(CN + .CA)

C
M

+
CC(CN + CA)CB

C
M

−
C
CCB
C
M

,


Lp

=
g

mC

B(CN + .CA)

C
M

+
gmC

′
NCB

C
M

,

g =
−gmC


B(CN + .CA)
C
M

+
C′
NCB
C
M

−
gmC


CCB

C
M

,

g =
−gmCBCC(CN + .CA)

C
M

+
C′
NCC
C
M

+
gmC


C

C
M

−
gm(CN + CA)CCCB

C
M

,

Vq =
CBCCCinVRF(CN + .CA)

C
M

−
C
CCinCBVRF

C
M

,

Vq =
CBCCCinVRF(CN + .CA)

C
M

−
C
CCinVRF
C
M

,

Ip=
−gmC


BCinVRF(CN+.CA)

C
M

+
gmCBCinC


CVRF

C
M

−
CBCinC

′
NVRF

C
M

−Ids,

(∂φi/∂t) (∂φi/∂t)where and CN’ = 2gm2 |dc +12gm3 [ |dc]2.

 Appendix B

In  this  appendix,  we  try  to  give  some  information  about
t0.  The  main  article  discusses  that t0 is  selected  less  than  the
times that two oscillators decay with it.  In fact, from a classic-
al  point  of  view, t0 should be in  the order  of  the steady-state
time.  Therefore,  in this  part,  we tried to calculate the step re-
sponse  of  the  circuit.  For  this  reason,  however,  for  simplicity,
a  simplified  version  of  the  circuit  shown  in Fig.  2 is  demon-
strated  in Fig.  B1 (Dip  Trace  software  is  used  to  draw  the
schematic), and the related transfer function is derived as: 

Vout(s)
VRF(s) = gmLpLS



LpLCpCpS + LpLCpS + (LCp + LpCp) S + LS + 
,

(B1)

where Lp2 = L2N||L2, Cp1 = Cgs + C1 +  (Cgd + Cf)Av0, Cp2 = CN +
C2. As can be seen in the expressions, the second oscillator’s in-
ductance and capacitance are affected by the nonlinearity ef-

fects  as L2N and CN, and  the  first  oscillator  is  just  influenced
by  the  gain  of  the  circuit Av0–gmr0,  where r0 is  the  resistance
generated  due  to  the  channel  length  modulated  effect.  The
step response of the transfer function expressed in Eq.  (B1) is
illustrated  in Fig.  B2.  It  is  shown  that  the  settling  time  is
around  80  ns;  this  time  is  very  close  to t0,  which  we  selected
based  on  the  oscillator’s  decay  rates.  In  fact, t0 is  selected
around the settling time for the system.
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